补题 [CF1831A] Twin Permutations
补题 [CF1831A] Twin Permutations
题目描述
You are given a permutation $ ^\dagger $ $ a $ of length $ n $ .
Find any permutation $ b $ of length $ n $ such that $ a_1+b_1 \le a_2+b_2 \le a_3+b_3 \le \ldots \le a_n+b_n $ .
It can be proven that a permutation $ b $ that satisfies the condition above always exists.
$ ^\dagger $ A permutation of length $ n $ is an array consisting of $ n $ distinct integers from $ 1 $ to $ n $ in arbitrary order. For example, $ [2,3,1,5,4] $ is a permutation, but $ [1,2,2] $ is not a permutation ( $ 2 $ appears twice in the array), and $ [1,3,4] $ is also not a permutation ( $ n=3 $ but there is $ 4 $ in the array).
输入格式
Each test contains multiple test cases. The first line of input contains a single integer $ t $ ( $ 1 \le t \le 2000 $ ) — the number of test cases. The description of test cases follows.
The first line of each test case contains a single integer $ n $ ( $ 1 \le n \le 100 $ ) — the length of permutations $ a $ and $ b $ .
The second line of each test case contains $ n $ distinct integers $ a_1,a_2,\ldots,a_n $ ( $ 1 \le a_i \le n $ ) — the elements of permutation $ a $ . All elements of $ a $ are distinct.
Note that there is no bound on the sum of $ n $ over all test cases.
输出格式
For each test case, output any permutation $ b $ which satisfies the constraints mentioned in the statement. It can be proven that a permutation $ b $ that satisfies the condition above always exists.
样例 #1
样例输入 #1
1 | 5 |
样例输出 #1
1 | 1 2 4 3 5 |
提示
In the first test case $ a=[1, 2, 4, 5, 3] $ . Then the permutation $ b=[1, 2, 4, 3, 5] $ satisfies the condition because $ 1 + 1 \le 2 + 2 \le 4 + 4 \le 5 + 3 \le 3 + 5 $ .
题解
题目解析
一道构造/脑筋急转弯, $n$ 中数字都不重复,如果我们强行构造
当然就能解决这个问题了.
AC代码
1 |
|